BZ013A703ZSB [KYOCERA AVX]

Electric Double Layer Capacitor, 3.6V, 80% +Tol, 20% -Tol, 70000uF, Surface Mount, ROHS COMPLIANT;
BZ013A703ZSB
型号: BZ013A703ZSB
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Electric Double Layer Capacitor, 3.6V, 80% +Tol, 20% -Tol, 70000uF, Surface Mount, ROHS COMPLIANT

电容器
文件: 总26页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
AVX BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
Version 10.3  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
Table of Contents  
®
An Introduction to BestCap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
3
®
BestCap General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SECTION 1: Electrical Ratings (A-B Series) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Electrical Ratings (BZ01/02/05/09). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
5
SECTION 2: Mechanical Specifications (A-Lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mechanical Specifications (C-Lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mechanical Specifications (H-Lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
8
9
Mechanical Specifications (L-Lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Mechanical Specifications (N-Lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Mechanical Specifications (S-Lead). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Packaging Specifications (BZ01/02/05/09). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Packaging Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Cleaning/Handling/Storage Conditions/Part Marking/Termination Finish. . . . 14  
Product Safety Materials Handling/Materials and Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Weight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SECTION 3: Electrical Characteristics – Schematic, Typical Characteristics. . . . . . . . . . . . . . . . . . . . 16  
®
Mounting Procedure on a PCB for BestCap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Qualification Test Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SECTION 4: Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
®
BestCap Construction/Voltage Drop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Enhancing the Power Capability of Primary Batteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
®
BestCap for GSM/GPRS PCMCIA Modems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SECTION 5: Extended Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and  
data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied.  
Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement  
and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required.  
Specifications are typical and may not apply to all applications.  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
INTRODUCING  
BESTCAP®: A NEW GENERATION OF PULSE SUPERCAPACITORS  
Supercapacitors, (also referred to as Electrochemical  
Capacitors or Double Layer Capacitors) have rapidly become  
recognized, not only as an excellent compromise between  
“electronic” or “dielectric” capacitors such as ceramic,  
tantalum, film and aluminum electrolytic, and batteries (Figure  
1), but also as a valuable technology for providing a unique  
combination of characteristics, particularly very high energy,  
power and capacitance densities.  
There are however, two limitations associated with  
conventional supercapacitors, namely: high ESR in the tens  
of Ohms range, and high capacitance loss when required to  
supply very short duration current pulses. BestCap®  
successfully addresses both of these limitations.  
The capacitance loss in the millisecond region is caused by  
the charge transfer (i.e. establishment of capacitance) being  
carried out primarily by relatively slow moving ions in double  
layer capacitors.  
Figure 1. Specific Energy of Capacitor Types  
10000  
1000  
100  
SPECIFIC ENERGY  
ELECTROLYTIC  
CAPACITOR  
10  
1
0.1  
1
10  
100  
1000  
10000  
Capacitance (mF)  
In the above-mentioned “electronic” capacitors, the charge  
transfer is performed by fast electrons, thereby creating  
virtually instant rated capacitance value. In the BestCap®, a  
unique proton polymer membrane is used – charge transfer  
by protons is close to the transfer rate for electrons and  
orders of magnitude greater than organic molecules. Figure  
2 below illustrates the severe capacitance loss experienced  
by several varieties of supercapacitors, under short pulse  
width conditions. It can also be seen from Figure 2, how well  
BestCap® retains its capacitance with reducing pulse widths.  
For comparison purposes, the characteristic of an equivalent  
capacitance value aluminum electrolytic capacitor is shown  
in Figure 2. The electrolytic capacitor is many times the vol-  
ume of the BestCap®.  
Figure 2. Actual Capacitance vs. Pulse Width  
100%  
EDLC-Electrochemical  
double layer capacitor  
80%  
60%  
®
Aluminum Electrolytic Capacitor  
manufacturer A EDLC  
40%  
20%  
manufacturer B EDLC  
manufacturer C EDLC  
0%  
1000  
100  
10  
1
Pulse Width (msec)  
2
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
®
BESTCAP – A SERIES – MAXIMUM CAPACITANCE, LOW ESR  
B SERIES – LOW PROFILE, LOW ESR  
The BestCap® is a low profile device available in four case sizes. Capacitance range is from 6.8 to 1000mF and includes 7  
voltage ratings from 3.6v to 15v.  
®
BESTCAP – AVAILABLE LEAD CONFIGURATIONS  
STANDARD:  
S-Style: Three Terminal Planar Mount  
(Available in BZ01, BZ05, BZ09 case only)  
L-Style: Four Terminal Planar Mount  
(Available in BZ01 and BZ02 case only)  
N-Style: Two Terminal Planar Mount  
(Available in BZ01, BZ05, BZ09 case only)  
A Style: Through-Hole Mount  
(Available in BZ01, BZ02 case only)  
H-Style: Extended Stand-Off Through Hole Mount  
(Available in BZ01, BZ02 case only)  
C-Style: Connector Mount  
(Available in BZ01, BZ05 case only)  
BODY DIMENSIONS  
Case Size  
L 0.5 (0.020)  
mm (inches)  
W
0.2 (0.008)  
H nom  
mm (inches)  
17 (0.669)  
30 (1.181)  
15 (0.590)  
15 (0.590)  
mm (inches)  
BZ01  
BZ02  
BZ05  
BZ09  
28 (1.102)  
48 (1.890)  
20 (0.787)  
17 (0.669)  
2.3 (0.091) – 6.5 (0.256)  
2.9 (0.114) – 6.8 (0.268)  
2.3 (0.091) – 6.5 (0.256)  
2.3 (0.091)  
ELECTRICAL SPECIFICATIONS  
Full dimensional specifications shown in section (2)  
Capacitance range:  
Capacitance tolerance:  
Voltage ratings (max):  
Test voltages:  
Surge test voltage:  
Temperature range:  
6.8mF – 1000mF  
–20% / +80%  
3.6V  
3.5V  
4.5V  
4.5V  
4.2V  
5.6V  
5.5V  
5.0V  
9V  
12V  
15V  
16V  
8.4V  
10.0V 11.0V 13.0V  
6.9V 11.3V 15.0V 18.8V 20.0V  
–20°C to 70°C, consult factory for -40ºC and +75ºC options  
HOW TO ORDER  
(See Detailed Electrical Specifications for valid combinations)  
BZ  
0
1
5
A
503  
Z
A
B
XX  
BestCap® Standard  
Case Size  
Rated  
Voltage  
3 = 3.6V  
4 = 4.5V  
5 = 5.5V  
7 = 7.0V  
9 = 9.0V  
C = 12.0V  
F = 15.0V  
G = 16.0V  
Series  
Capacitance Capacitance  
Code Tolerance  
Lead Packaging Not Used For  
0 = Standard 1 = 28mmx17mm  
1 = High Cap 2 = 48mmx30mm  
5 = 20mmx15mm  
A = Maximum  
Capacitance  
B = Low Profile  
Format B = Bulk  
Standard  
Product  
(Consult  
(Farad Code) Z = (-20/+80)% A, C, H, L  
N or S  
9 = 17mmx15mm  
Factory For  
Special  
Requirements)  
3
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 1: ELECTRICAL RATINGS  
CAPACITANCE / VOLTAGE / CASE SIZE MATRIX  
A-SERIES – MAXIMUM CAPACITANCE  
Capacitance  
Rated Voltage DC at 25°C  
mF  
Code  
3.6V  
5.5V  
9.0V  
12.0V  
16.0V  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
10  
22  
103  
223  
333  
473  
503  
683  
703  
903  
104  
124  
144  
154  
204  
284  
404  
474  
564  
105  
BZ05  
BZ01  
C, N, S  
A, C, H, S  
S
33  
BZ05  
C, N, S  
BZ01  
A, C, H, S  
47  
BZ11  
BZ02  
50  
BZ01  
BZ05  
A, C, H, S, L  
S
68  
70  
BZ01  
A, C, H, S, L  
90  
A, H, L  
100  
120  
140  
150  
200  
280  
400  
470  
560  
1000  
BZ01  
A, H, S, L  
BZ02  
A, H, L  
BZ12  
A, L, N  
BZ01  
BZ02  
BZ02  
A, H, S, L  
A, H, L  
BZ15  
BZ02  
S
A, H, L  
BZ02  
BZ12  
A, H, L  
A
A, H, L  
BZ12  
A, H, L  
B-SERIES – LOW PROFILE  
Capacitance  
Rated Voltage DC at 25°C  
mF  
Code  
3.6V  
4.5V  
5.5V  
9.0V  
12.0V  
15.0V  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
Case  
Size  
Lead  
Styles  
6.8  
15  
22  
30  
33  
47  
50  
60  
100  
682  
153  
223  
303  
333  
473  
503  
603  
104  
BZ05  
C, N, S  
BZ09  
BZ05  
N, S  
N, S  
BZ05  
C, N, S  
BZ01  
A, H, S  
BZ01  
A, H, S  
BZ01  
BZ05  
BZ11  
C, S, N  
S, N  
S
BZ01  
BZ15  
C, S, N  
N, S  
BZ01  
BZ11  
C, S, N  
C, S, N  
BZ01 A, H, S, L  
4
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 1: ELECTRICAL RATINGS  
ELECTRICAL RATINGS - SEE SECTION 2 FOR DIMENSIONAL REFERENCES  
BZ 01 CASE SIZE  
Rated  
Voltage  
(Volts)  
Leakage  
Current  
(µA max)  
Height S-Lead  
(AJ)*  
Part  
Number  
Capacitance  
(mF)  
ESR  
Height A-Lead Height C-Lead Height H-Lead Height S-Lead  
(mOhms at 1 kHz)  
(mm)  
(mm)  
(mm)  
(mm)  
(mm)  
Nominal  
+80%, –20%  
Typical  
Maximum  
Maximum  
H max  
H max  
H max  
H max  
H max  
3.6V  
BZ013B503Z_B  
BZ013A703Z_B  
BZ113B104Z_B  
BZ013A144Z_B  
4.5V  
50  
70  
100  
140  
100  
70  
120  
168  
120  
84  
5
5
NA  
3.5  
NA  
5.3  
2.1  
2.9  
2.1  
NA  
NA  
6.4  
NA  
8.2  
3.2  
4.0  
3.2  
5.8  
2.1  
2.9  
2.1  
NA  
3.6V  
100  
140  
10  
5
BZ014B333Z_B 4.5V  
5.5V  
33  
150  
180  
5
NA  
2.4  
NA  
3.5  
2.4  
BZ015B303Z_B  
30  
50  
160  
160  
80  
192  
192  
96  
5
5
NA  
4.1  
5.4  
6.7  
2.7  
3.5  
NA  
NA  
NA  
7.0  
8.3  
9.6  
3.8  
4.6  
5.9  
7.2  
2.7  
3.5  
NA  
NA  
BZ015A503Z_B  
5.5V  
BZ015B603Z_B  
60  
10  
10  
BZ015A104Z_B  
9.0V  
100  
80  
96  
BZ019B223Z_B  
9.0V  
22  
33  
250  
250  
300  
300  
5
5
4.7  
5.5  
NA  
4.9  
7.6  
8.4  
5.2  
6.0  
4.1  
4.9  
BZ019A333Z_B  
12.0V  
BZ01CB153Z_B  
12.0V  
15  
22  
350  
350  
420  
420  
5
5
5.9  
7.1  
NA  
6.5  
8.8  
6.4  
7.6  
5.3  
6.5  
BZ01CA223Z_B  
10.0  
* Select S-Lead BZ01 BestCap® are available with insulation on the bottom of the part and zero clearance from the PCB. See section 2.6 for  
dimensions. To order, please add special requirement AJ to the end of the part number. Example: BZ013B503ZSBAJ  
BZ 02 CASE SIZE  
Rated  
Voltage  
(Volts)  
Leakage  
Current  
(µA max)  
Part  
Number  
Capacitance  
(mF)  
ESR  
Height A-Lead Height H-Lead Height L-Lead  
(mOhms at 1 kHz)  
(mm)  
(mm)  
(mm)  
Nominal  
+80%, –20%  
Typical  
Maximum  
Maximum  
H max  
H max  
H max  
3.6V  
BZ023A284Z_B  
BZ023A564Z_B  
5.5V  
280  
560  
45  
54  
20  
40  
3.5  
5.3  
6.4  
8.2  
3.7  
5.5  
3.6V  
25  
30  
BZ025A204Z_B  
200  
400  
60  
35  
35  
72  
42  
42  
20  
40  
4.1  
6.7  
6.7  
7.0  
9.6  
9.6  
4.3  
6.9  
6.9  
BZ025A404Z_B 5.5V  
BZ125A105Z_B  
9.0 V  
1000  
120  
BZ029A124Z_B 9.0V  
12.0V  
120  
90  
70  
90  
84  
20  
20  
60  
5.8  
7.4  
9.1  
8.7  
6.0  
7.6  
9.1  
BZ02CA903Z_B 12.0V  
16.0V  
108  
192  
10.3  
BZ12GA124Z_B 16.0V  
120  
160  
All capacitance, ESR, and leakage current values listed in these tables are at room temperature only.  
5
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
BZ 05 CASE SIZE  
Rated  
Voltage  
(Volts)  
Leakage  
Current  
(µA max)  
Part  
Number  
Capacitance  
(mF)  
ESR  
Height C-Lead Height N-Lead Height S-Lead  
(mOhms at 1 kHz)  
(mm)  
(mm)  
(mm)  
Nominal  
+80%, –20%  
Typical  
Maximum  
Maximum  
H max  
H max  
H max  
4.5V  
BZ054B223Z_B  
BZ154B473Z_B  
5.5V  
22  
47  
170  
170  
204  
204  
5
NA  
NA  
2.3  
2.3  
2.3  
2.3  
4.5V  
5.5V  
10  
BZ055B153Z_B  
BZ055A333Z_B  
BZ055B333Z_B  
BZ055A683Z_B  
12.0V  
15  
33  
33  
68  
250  
250  
125  
125  
300  
300  
150  
150  
5
5
2.7  
3.5  
NA  
NA  
2.7  
3.5  
NA  
NA  
2.7  
3.5  
4.8  
6.1  
10  
10  
BZ05CA103Z_B  
15.0V  
12.0V  
15.0V  
10  
500  
500  
600  
600  
5
6.5  
4.8  
6.5  
5.8  
6.5  
5.8  
BZ05FB682Z_B  
6.8  
10  
BZ 09 CASE SIZE  
Rated  
Leakage  
Current  
(µA max)  
Part  
Capacitance  
(mF)  
ESR  
(mOhms at 1 kHz)  
Height N-Lead Height S-Lead  
Voltage  
(Volts)  
Number  
(mm)  
H max  
2.4*  
(mm)  
H max  
2.3*  
Nominal  
+80%, –20%  
Typical  
250  
Maximum  
300  
Maximum  
5
4.5V  
BZ094B153Z_BAI  
4.5V  
15  
* The 4.5V BZ09 BestCap® are available only in a special low profile version.  
All capacitance, ESR, and leakage current values listed in these tables are at room temperature only.  
6
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS  
2.1 Case Dimensions & Recommended PCB Layout  
2.1.1: A-Style Configuration (Pin Through Hole)  
L
BL  
W
LO  
H
LL  
S
LW  
TABLE 2.1.1: A-STYLE DIMENSIONS  
Case Dimensions: mm (inches)  
Case Size  
BL  
W
H
L
S
LO  
0.2 (0.008)  
LW  
0.2 (0.008)  
LL  
+1.0 (0.040)/-0 +1.0 (0.040)/-0 (Maximum)  
1.0 (0.040)  
0.1 (0.004)  
0.2 (0.008)  
BZ01  
BZ02  
28 (1.102)  
48 (1.890)  
17 (0.669)  
30 (1.181)  
See Section 1  
See Section 1  
32  
52  
0.45 (0.018)  
0.45 (0.018)  
1.5 (0.059)  
1.5 (0.059)  
1.27 (0.050)  
1.27 (0.050)  
2.5 (0.098)  
2.5 (0.098)  
2.1.2: A-Lead Configuration (Through Hole)  
C
D
B
A
TABLE 2.1.2: A-LEAD LAYOUT DIMENSIONS  
Recommended PCB Dimensions: mm (inches)  
Case Size  
A
B
C
D
0.05 (0.002)  
0.05 (0.002)  
0.05 (0.002)  
0.1 (0.004)  
BZ01  
BZ02  
17.25 (0.679)  
30.25 (1.191)  
8.90 (0.350)  
8.90 (0.350)  
28 (1.102)  
48 (1.890)  
Ø1.4 (0.055)  
Ø1.4 (0.055)  
7
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.2.1: C-Style Case Dimensions  
L
BL  
B
W
LW  
H
TABLE 2.2.1: C-STYLE CASE DIMENSIONS  
Case Dimensions: mm (inches)  
L
W
H
BL  
LW  
B
Case Size  
BZ01  
0.5 (0.020) +1.0 (0.040)/-0 (Maximum) +1.0 (0.040)/-0  
0.2 (0.008)  
0.5 (0.020)  
31 (1.220)  
23 (0.906)  
17 (0.669)  
15 (0.591)  
See Section 1  
See Section 1  
28 (1.102)  
20 (0.787)  
2.5 (0.098)  
2.5 (0.098)  
10 (0.394)  
10 (0.394)  
BZ05  
2.2.2: C-Lead Configuration  
KYOCERA ELCO  
04 6284 024 001 868+  
24 PIN CONNECTOR  
Pinouts:  
1-5  
Common*  
6-18  
Not Connected  
CW  
W
19-24 Positive*  
* Devices are non polar but it is usual  
to maintain case at ground potential.  
CL  
G
OAL  
Connector must be ordered separately.  
TABLE 2.2.2: C-LEAD LAYOUT DIMENSIONS  
PCB Dimensions: mm (inches)  
Case Size  
OAL  
W
CW*  
CL*  
G
0.5 (0.020) +1.0 (0.040)/-0  
0.5 (0.020)  
BZ01  
BZ05  
33.05 (1.301)  
25.05 (0.986)  
17 (0.669)  
15 (0.591)  
4.05 (0.159)  
4.05 (0.159)  
13.9 (0.547)  
13.9 (0.547)  
1.0 (0.039)  
1.0 (0.039)  
* See Connector data sheet.  
8
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.3.1: H-Style Case Dimensions (Through Hole Extended Height)  
L
BL  
W
H
LO  
LL  
S
LW  
TABLE 2.3.1: H-STYLE CASE DIMENSIONS  
Case Dimensions: mm (inches)  
S
BL  
W
H
L
LO  
0.2 (0.008)  
LW  
0.2 (0.008)  
LL  
Case Size  
+0.5 (0.020)/  
-0.4 (0.016)  
+1.0 (0.040)/-0 +1.0 (0.040)/-0 (Maximum)  
1.0 (0.040)  
0.2 (0.008)  
BZ01  
BZ02  
28 (1.102)  
48 (1.890)  
17 (0.669)  
30 (1.181)  
See Section 1  
See Section 1  
32  
52  
3.0  
3.0  
1.5 (0.059)  
1.5 (0.059)  
1.27 (0.050)  
1.27 (0.050)  
2.5 (0.098)  
2.5 (0.098)  
2.3.2: H-Lead Configuration (Through Hole Extended Height)  
C
D
B
A
TABLE 2.3.2: H-LEAD LAYOUT DIMENSIONS  
PCB Dimensions: mm (inches)  
Case Size  
A
B
C
D
0.05 (0.002)  
0.05 (0.002)  
0.05 (0.002)  
0.1 (0.004)  
BZ01  
BZ02  
17.25 (0.679)  
30.25 (1.191)  
8.90 (0.350)  
8.90 (0.350)  
28 (1.102)  
48 (1.890)  
Ø1.4 (0.055)  
Ø1.4 (0.055)  
9
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.4.1: L-Lead Configuration (Planar Mount)  
L
BL  
W
LO  
LL  
LW  
H
S
TABLE 2.4.1: L-STYLE CASE DIMENSIONS  
Case Dimensions: mm (inches)  
Case Size  
BL  
W
H
L
S
LO  
0.2 (0.008)  
LW  
0.2 (0.008)  
LL  
+1.0 (0.040)/-0 +1.0 (0.040)/-0 (Maximum)  
1.0 (0.040)  
0.2 (0.008)  
0.5 (0.020)  
BZ01  
BZ02  
28 (1.102)  
48 (1.890)  
17 (0.6691)  
30 (1.181)  
See Section 1  
See Section 1  
33  
52  
0.55 (0.022)  
0.55 (0.022)  
1.5 (0.059)  
1.5 (0.059)  
1.27 (0.050)  
1.27 (0.050)  
2.4 (0.098)  
2.4 (0.098)  
2.4.2: L-Lead Configuration (Planar Mount)  
C
B
A
PW  
PL  
TABLE 2.4.2: L-STYLE LEAD LAYOUT  
PCB Dimensions: mm (inches)  
Case Size  
A
B
C
PL  
0.2 (0.008)  
PW  
0.2 (0.008)  
0.1 (0.004)  
0.1 (0.004)  
0.1 (0.004)  
BZ01  
BZ02  
19.2 (0.776)  
32.2 (1.268)  
10.8 (0.425)  
10.8 (0.425)  
28 (1.102)  
48 (1.890)  
3.0 (0.118)  
3.2 (0.126)  
3.7 (0.146)  
3.7 (0.146)  
10  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.5.1: N-Lead Configuration  
L
LL  
BL  
LW  
EW  
C
L
B
W
EL  
H
TABLE 2.5.1: N-STYLE CASE DIMENSIONS  
Case Dimensions: mm (inches)  
Case Size  
L
W
H
B
LL  
LW  
EL  
EW  
0.5 (0.020) +1.0 (0.040)/-0 (Maximum)  
0.5 (0.020)  
0.2 (0.008)  
0.2 (0.008)  
1.4 (0.055)  
2.5 (0.098)  
2.5 (0.098)  
0.5 (0.020)  
0.5 (0.020)  
BZ01  
BZ05  
BZ09  
30.5 (1.201)  
23.5 (0.925)  
20.5 (0.807)  
17 (0.669)  
15 (0.591)  
15 ( 0.591)  
See Section 1  
See Section 1  
See Section 1  
11.2 (0.441)  
7.5 (0.295)  
7.5 (0.295)  
2.5 (0.098)  
2.5 (0.098)  
2.5 (0.098)  
2.5 (0.098)  
3.5 (0.138)  
3.5 (0.138)  
1.4 (0.055)  
2.5 (0.098)  
2.5 (0.098)  
2.5.2: N-Lead Configuration (Planar Mount)  
PW  
B
A
LPL  
RPL  
TABLE 2.5.2: N-STYLE LEAD LAYOUT  
PCB Dimensions: mm (inches)  
Case Size  
A
B
PW  
0.1 (0.004)  
LPL  
0.1 (0.004)  
RPL  
0.1 (0.004)  
0.5 (0.020)  
0.1 (0.004)  
BZ01  
BZ05  
BZ09  
0.5 (0.020)  
1.0 (0.039)  
1.0 (0.039)  
9.5 (0.374)  
5.9 (0.232)  
5.9 (0.232)  
3.2 (0.126)  
4.1 (0.161)  
4.1 (0.161)  
3.5 (0.138)  
2.5 (0.098)  
2.5 (0.098)  
3.5 (0.138)  
3.5 (0.138)  
3.5 (0.138)  
11  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.6.1: S-Lead Configuration (Planar Mount)  
L
BL  
W
EW  
EL  
LW  
S
LL  
H
TABLE 2.6.1: S-STYLE CASE DIMENSIONS  
Case Dimensions: mm (inches)  
Case Size  
BL  
W
H
L
EL  
0.5 (0.020)  
EW  
0.2 (0.008)  
LL  
LW  
0.2 (0.008)  
+1.0 (0.040)/-0 +1.0 (0.040)/-0 (Maximum)  
1.0 (0.040)  
0.5 (0.020)  
BZ01  
BZ05  
BZ09  
28 (1.102)  
20 (0.787)  
17 (0.669)  
17 (0.669)  
15 (0.591)  
15 (0.591)  
See Section 1  
See Section 1  
See Section 1  
38.7 (1.524)  
26 (1.024)  
23 (0.906)  
5.0 (0.197)  
3.5 (0.138)  
3.5 (0.138)  
4.5 (0.177)  
2.5 (0.098)  
2.5 (0.098)  
5.7 (0.224)  
2.5 (0.098)  
2.5 (0.098)  
2.0 (0.079)  
2.5 (0.098)  
2.5 (0.098)  
2.6.2: S-Lead Layout (Planar Mount)  
Planar Mount  
“S”  
B
Available in  
BZ01, BZ05  
& BZ09  
Case Size Only  
EPW  
A
LPW  
EPL  
LPL  
TABLE 2.6.2: S-STYLE PAD LAYOUT DIMENSIONS  
PCB Dimensions: mm (inches)  
Case Size  
A
B
EPL  
0.1 (0.004)  
EPW  
0.1 (0.004)  
LPL  
0.1 (0.004)  
LPW  
0.1 (0.004)  
0.1 (0.004)  
0.1 (0.004)  
BZ01  
BZ05  
BZ09  
13.0 (0.512)  
10.0 (0.394)  
10.0 (0.394)  
35.1 (1.382)  
25.0 (0.984)  
22.0 (0.886)  
4.5 (0.177)  
3.0 (0.118)  
3.0 (0.118)  
6.0 (0.236)  
4.5 (0.177)  
4.5 (0.177)  
5.8 (0.228)  
2.9 (0.114)  
2.9 (0.114)  
3.5 (0.138)  
4.5 (0.177)  
4.5 (0.177)  
12  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS (cont’d)  
2.7: Packaging Specifications  
167.6  
(6.60)  
13.2  
50.8  
(0.52)  
(2.00)  
BZ01 Case:  
31.8  
(1.25)  
167.6  
(6.60)  
BZ02 Case:  
167.6  
(6.60)  
13.2  
71.0  
(0.52)  
(2.80)  
38.1  
(1.50)  
167.6  
(6.60)  
BZ05, BZ09 Case:  
167.6  
(6.60)  
13.2  
38.1  
(0.52)  
(1.50)  
28.6  
(1.12)  
167.6  
(6.60)  
This specification applies when our electrochemical supercapacitors are packed using a 165mm by 165mm container. The  
parts are held in place by a 166mm by 166mm lid.  
PACKAGING QUANTITIES:  
Size  
BZ01  
BZ02  
BZ05  
BZ09  
No. of Rows  
No. of Columns  
Pieces/Tray  
5
4
5
5
3
2
4
4
15  
8
20  
20  
13  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 2: MECHANICAL SPECIFICATIONS  
2.8 CLEANING  
The BestCap® supercapacitor is cleaned prior to shipment.  
Should cleaning be required prior to insertion into the applica-  
tion, it is recommended to use a small amount of propanol  
taking care not to remove the label. The cell should not be  
immersed due to possible deterioration of the epoxy encap-  
sulation. Care must also be taken not to bend the leads.  
2.9 HANDLING  
Care should be taken not to allow grease or oil into the part  
as it may lead to soldering problems. Handling should be  
minimized to reduce possible bending of the electrodes  
leads.  
2.10 STORAGE CONDITIONS  
AVX BestCap® supercapacitor are unaffected by the following  
storage conditions.  
Temperature:  
Humidity:  
15°C ~ 35°C  
45% RH ~ 75% RH  
This temperature and humidity range are specified for consid-  
eration of terminal solderability. BestCap® are able to with-  
stand shelf life at 70ºC for 1000 hours.  
2.11 PART MARKING  
Voltage  
Capacitance  
Date and  
Lot Code  
Country of Origin  
2.12 TERMINATION FINISH  
Gold over nickel, tin over nickel.  
14  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
2.13 PRODUCT SAFETY MATERIALS HANDLING  
Precautions  
• Do not disassemble the capacitor.  
internal components, it is recommended to wash the skin  
with excess of running water.  
• Do not incinerate the capacitor and do not use incineration  
for disposal.  
• The capacitor contains polymeric electrolyte and carbon  
electrodes. However, since the polymer is composed of  
acid based chemical ingredients, if punctured or  
dismantled and the skin is contacted with the capacitor  
• If any internal material contacts the eyes, rinse thoroughly  
with running water.  
• Be aware not to apply over-voltage. Combination of  
charging at voltage greater than the nominal, plus high  
temperature, plus prolonged time-may result in capacitor  
bulging or rupturing.  
®
2.14 BESTCAP MATERIALS AND WEIGHT  
RoHS  
Compliant?  
YES  
BZ01  
Weight %  
56.7%  
4.2%  
13.6%  
2.3%  
5.2%  
2.5%  
1.0%  
0.9%  
BZ02  
Weight %  
44.5%  
0.7%  
8.0%  
1.0%  
8.0%  
14.3%  
5.7%  
5.2%  
11.4%  
1.0%  
BZ05  
Weight %  
64.8%  
BZ09  
Weight %  
64.8%  
Materials  
Constituent  
Case  
Stainless Steel  
Stainless Steel  
Stainless Steel  
Leads (A, H, and L lead only)  
Electrode  
Electrode Insulation  
Core  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
13.6%  
2.4%  
1.6%  
1.0%  
0.4%  
0.3%  
11.8%  
2.4%  
1.8%  
100%  
13.6%  
2.4%  
1.6%  
1.0%  
0.4%  
0.3%  
11.8%  
2.4%  
1.8%  
100%  
Laminating Adhesive  
Metallized Current Collector  
Current Collector  
Active Electrode  
Core Sealant  
Encapsulant  
Bottom Insulation  
Label  
Epoxy  
Laminating Adhesive  
Label  
10.3%  
2.3%  
1.0%  
YES  
YES  
0.2%  
100%  
TOTAL  
100%  
®
BestCap is RoHS compliant  
May be assembled with Pb-Free solder.  
®
BESTCAP – TYPICAL WEIGHT DATA  
Rated Voltage (V) Capacitance (mF)  
Part Number  
BZ013B503Z_B  
BZ013A703Z_B  
BZ113B104Z_B  
BZ013A144Z_B  
BZ023A284Z_B  
BZ023A564Z_B  
BZ094B153Z_B  
BZ054B223Z_BBQ  
BZ014B333Z_B  
BZ154B473Z_BBQ  
BZ055B153Z_B  
BZ015B303Z_B  
BZ055A333Z_B  
BZ055B333Z_B  
BZ015A503Z_B  
BZ015B603Z_B  
BZ055A683Z_B  
BZ015A104Z_B  
BZ025A204Z_B  
BZ025A404Z_B  
BZ125A105Z_B  
BZ019B223Z_B  
BZ019A333Z_B  
BZ029A124Z_B  
BZ05CA103Z_B  
BZ01CB153Z_B  
BZ01CA223Z_B  
BZ02CA903Z_B  
BZ05FB682Z_B  
BZ12GA124Z_B  
Weight (g)  
3.6V  
50  
70  
2.9  
4.2  
2.9  
5.3  
12.2  
15.9  
1.5  
1.8  
3.2  
1.8  
1.9  
3.4  
2.3  
2.1  
4.6  
5.5  
3.4  
6.1  
13.3  
18.4  
18.4  
4.4  
5.0  
15.6  
3.5  
5.0  
6.2  
19.3  
2.8  
25  
100  
140  
280  
560  
15  
22  
33  
47  
15  
4.5V  
5.5V  
30  
33  
33  
50  
60  
68  
100  
200  
400  
1000  
22  
9.0V  
33  
120  
10  
12.0V  
15  
22  
90  
15.0V  
16.0V  
6.8  
124  
15  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 3: ELECTRICAL CHARACTERISTICS – SCHEMATIC  
3.1.2: A-, H- & L-Lead  
3.1.3: C- & N-Lead  
3.1 Terminal Connections:  
3.1.1: S-Lead  
Common terminals connected to case  
Common terminals connected to case  
Devices are non polar but it is usual to maintain case at ground potential  
SECTION 3.2: TYPICAL CHARACTERISTICS  
Capacitance vs. Temperature  
ESR vs. Temperature  
0.07  
0.700  
0.06  
0.05  
0.04  
0.03  
0.02  
0.600  
0.500  
0.400  
0.300  
0.200  
0.01  
0
0.100  
0.000  
-25 -20 -15-10 -5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
-25 -20 -15-10 -5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Temperature (°C)  
Temperature (°C)  
BZ015A503ZLB35  
BZ015A503ZLB35  
ESR vs. Frequency  
ESR Comparison  
10  
1.00E+01  
1.00E+00  
BZ015A503  
BZ014A104  
BZ025A204  
BZ015A503  
BZ014A104  
BZ025A204  
1
0.1  
1.00E-01  
1.00E-02  
0.01  
10  
100  
1,000  
10,000  
100,000 1,000,000 10,000,000 100,000,000  
10  
100  
1,000  
10,000  
100,000 1,000,000 10,000,000 100,000,000  
Frequency (Hz)  
Frequency (Hz)  
Impedance vs. Frequency  
Impedance Comparison  
10  
1
10  
1
BZ015A503  
BZ014A104  
BZ025A204  
BZ015A503  
BZ014A104  
BZ025A204  
0.1  
0.1  
0.01  
0.01  
10  
100  
1,000  
10,000  
100,000 1,000,000 10,000,000 100,000,000  
10  
100  
1,000  
10,000  
100,000 1,000,000 10,000,000 100,000,000  
Frequency (Hz)  
Frequency (Hz)  
16  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 3.3: MOUNTING PROCEDURE ON A PCB FOR BESTCAP  
®
BestCap® products can be mounted on PCBs by either  
selectively heating only the capacitor terminals by using a  
pulsed reflow soldering station or by using hand soldering.  
IR Reflow or wave soldering may not be used. The main  
body of the device should be less than 60ºC at all times.  
PULSED REFLOW SOLDERING  
HAND SOLDERING STATION  
Application data for the ‘Unitek’ pulsed-reflow soldering  
station.  
Equipment:  
Temperature controlled, 50W general  
purpose iron  
Solder type:  
Temperature:  
Time:  
63Sn/37Pb, rosin core wire  
400ºC (+20ºC - 100ºC)  
Equipment:  
Controller  
Head  
Uniflow ‘Pulsed Thermode Control’  
Thin-line Reflow Solder Head  
2 to 5 seconds maximum, smaller time  
(2 sec.) at 420ºC and 5 sec. at 300ºC,  
overall it being a time-temperature rela-  
tionship. Shorter time, higher temperature  
is preferred.  
Solder paste type  
Solder composition  
Percent solids  
No Clean Flux  
63% Sn, 37% Pb  
88%  
Solder Type:  
Temperature:  
Time:  
Lead Free, 95Sn/5Ag  
430ºC (+20ºC - 100ºC)  
Solder thickness  
6 mils  
2 to 5 seconds maximum, smaller time  
(2 sec.) at 450ºC and 5 sec. at 330ºC,  
overall it being a time-temperature rela-  
tionship. Shorter time, higher temperature  
is preferred.  
Solder-weld tip size  
0.075"  
Solder-weld tip force 6 lbs.  
Temperature profile:  
Temperature  
Time  
0 sec.  
2 sec.  
2 sec.  
Pre-heat  
Rise  
130ºC  
440ºC ( 10)  
440ºC ( 10)  
165ºC  
Reflow  
Cool  
In both cases, the main body of the BestCap® part should be less than 60ºC at all times.  
17  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 3.4: QUALIFICATION TEST SUMMARY  
Test  
Initial Capacitance  
Measurement  
Test Method  
Parameter  
Capacitance (Cap)  
Limits  
+80% / -20%  
of rated Cap  
Charge to test voltage at room temperature. Disconnect parts from  
voltage to remove charging effects. Discharge cells with a constant current  
(4 mA) noting voltage and time 1 and 2 seconds after beginning discharge.  
C = I * dt/dv  
Initial DCL  
Measurement  
Charge to test voltage at room temperature. Disconnect parts from  
voltage to remove charging effects. Note voltage and time 5 minutes  
and 25 minutes after disconnecting. I = C * dV/dt  
Leakage Current (DCL)  
Within Limit  
Initial ESR  
Measurement  
Measurement frequency @ 1kHz; Measurement voltage @ 10 mV  
at room temperature  
Equivalent Series  
Resistance (ESR)  
+20% / -50%  
of typical value  
Load Life  
Apply test voltage at 70ºC for 1000 hours. Allow to cool to room  
temperature and measure Cap, DCL and ESR  
DCL  
Cap  
ESR  
< 2.0x rated max.  
> 0.7x rated  
< 3.0x rated  
Shelf Life  
Maintain at 70ºC for 1000 hours with no voltage applied. Allow to  
cool to room temperature and measure Cap, DCL and ESR.  
DCL  
Cap  
ESR  
< 1.5x rated max.  
> 0.7x rated  
< 2.0x rated  
Humidity Life  
Maintain at 40°C / 95% RH for 1000 hours. Allow to cool to room  
temperature and measure Cap, DCL and ESR.  
DCL  
Cap  
ESR  
< 1.5x rated max.  
> 0.7x rated  
< 1.5x rated  
Leg pull strength  
Surge Voltage  
Apply an increasing force in shear mode until leg pulls away  
Yield Force  
(A and L leads only)  
Not less than  
25 pounds shear  
Step  
1
2
3
Apply 125% of the rated voltage for 10 seconds  
Short the cell for 10 minutes  
DCL  
Cap  
ESR  
< 1.5x rated max.  
> 0.7x rated  
< 1.5x rated  
Repeat 1 and 2 for 1000 cycles  
Temperature Cycling  
Step  
1
Ramp oven down to –20°C and then hold for 15 min.  
Ramp oven up to 70ºC and then hold for 15 min.  
Repeat 1 and 2 for 100 cycles  
DCL  
Cap  
ESR  
< 1.5x rated max.  
> 0.7x rated  
< 1.5x rated  
2
3
Temperature  
Characteristics  
Step  
Temp  
Soak Time (prior to test)  
1
2
3
4
5
6
7
8
-40°C  
4 hours  
DCL  
70°C  
Measure Cap, ESR, DCL (-40ºC rated parts only)  
< 10x rated  
> 80% rated  
-20°C  
Measure Cap, ESR, DCL  
-10°C  
Measure Cap, ESR, DCL  
0°C  
Measure Cap, ESR, DCL  
25°C  
Measure Cap, ESR, DCL  
40°C  
Measure Cap, ESR, DCL  
60°C  
Measure Cap, ESR, DCL  
70°C  
4 hours  
4 hours  
4 hours  
4 hours  
4 hours  
4 hours  
4 hours  
Cap  
25°C  
ESR  
-40°C  
-20°C  
-10°C  
70°C  
< 20x rated  
< 5x rated  
< 4x rated  
< 1.3x rated  
< 1.3x rated  
Measure Cap, ESR, DCL  
Thermal Shock  
Vibration  
Step  
1
2
Place cells into an oven at –20°C for 30 minutes  
In less than 15 seconds, move cells into a  
70ºC oven for 30 minutes  
DCL  
Cap  
< 2.0x rated max.  
> 0.7x rated  
3
Step  
1
Repeat 1 and 2 for 100 cycles  
ESR  
< 2.0x rated max.  
Apply a harmonic motion that is deflected 0.03 inches  
Vary frequency from 10 cycles per second to  
55 cycles at a ramp rate of 1 Hz per minute  
DCL  
Cap  
< 2.0x rated max.  
> 0.7x rated  
2
3
4
5
Vibrate the cells in the X-Y direction for three hours  
Vibrate the cells in the Z direction for three hours  
Measure Cap, ESR and DCL  
ESR  
< 2.0x rated max.  
18  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 4: APPLICATION NOTES  
4.1: ELECTROCHEMICAL EDLC VS.  
ELECTRONIC TECHNOLOGY -  
BESTCAP CONSTRUCTION  
To understand the benefits offered by the BestCap®, it is  
necessary to examine how an electrochemical capacitor  
works. The most significant difference between an electron-  
ic capacitor and an electrochemical capacitor is that the  
charge transfer is carried out by the electrons in the former  
and by electrons and ions in the latter. The anions and  
cations involved in double layer supercapacitors are con-  
tained in the electrolyte which maybe liquid, (normally an  
aqueous or organic solution) or solid. The solid electrolyte is  
almost universally a conductive polymer.  
4.2: VOLTAGE DROP  
Two factors are critical in determining the voltage drop when  
a capacitor delivers a short current pulse; these are ESR  
and “available” capacitance as shown in Figure 4.  
®
Vo  
V(IR)  
total=I*R + I*  
t/C(t)  
V(Q)=I* t/C(t)  
Vt  
t  
Figure 4. Voltage-time relation of capacitor unit  
Cell Case (Anode)  
The instant voltage drop ΔVESR is caused by and is directly  
proportional to the capacitors ESR. The continuing voltage  
drop with time ΔVC, is a function of the available charge, i.e.  
capacitance. From Figures 3 and 4, it is apparent that, for  
very short current pulses, e.g. in the millisecond region, the  
combination of voltage drops in a conventional supercapaci-  
tor caused by a) the high ESR and b) the lack of available  
capacitance, causes a total voltage drop, unacceptable for  
most applications. Now compare the BestCap® performance  
under such pulse conditions. The ultra-low ESR, (in  
milliOhms), minimizes the instantaneous voltage drop, while  
the very high retained capacitance drastically reduces the  
severity of the charge related drop. This is explained further  
in a later section.  
Insulation Material  
Electrode (Cathode)  
Current Collector  
Carbon  
Separator  
Carbon  
Current Collector  
Cell Case (Anode)  
Electrons are relatively fast moving and therefore transfer  
charge “instantly”. However, ions have to move relatively  
slowly from anode to cathode, and hence a finite time is  
needed to establish the full nominal capacitance of the  
device. This nominal capacitance is normally measured at  
1 second.  
®
EFFICIENCY/TALKTIME BENEFITS OF BESTCAP  
Because BestCap®, when used in parallel with a battery,  
provides a current pulse with a substantially higher voltage  
than that available just from the battery as shown in Figure  
5, the efficiency of the RF power amplifier is improved.  
The differences between EDLC (Electrochemical Double  
Layer Capacitors) and electronic capacitors are summarized  
in the table below:  
4
3.8  
3.6  
3.4  
3.2  
3
5
4
3
2
1
0
• A capacitor basically consists of two conductive plates  
(electrodes), separated by a layer of dielectric material.  
• These dielectric materials may be ceramic, plastic film,  
paper, aluminum oxide, etc.  
• EDLCs do not use a discrete dielectric interphase  
separating the electrodes.  
0
1000  
2000  
3000  
4000  
Time (µSeconds)  
• EDLCs utilize the charge separation, which is formed  
across the electrode – electrolyte interface.  
Battery Voltage  
Battery and Capacitor Voltage  
Current Pulse  
• The EDLC constitutes of two types of charge carriers:  
IONIC species on the ELECTROLYTE side and  
ELECTRONIC species on the ELECTRODE side.  
Figure 5. GSM Pulse  
Additionally, the higher-than battery voltage supplied by the  
BestCap® keeps the voltage pulse above the “cut off volt-  
age” limit for a significantly longer time than is the case for  
the battery alone. This increase in “talk time” is demonstrated  
in Figures 6(a) (Li-Ion at +25°C), and 6(b) (Li-Ion at 0°C).  
19  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
PULSE CAPACITOR APPLICATIONS  
Cutoff Voltage Limits  
4
As mentioned earlier, the voltage drop in a circuit is critical  
as the circuit will not operate below a certain cut-off voltage.  
There are two sources of voltage drop (ΔV) which occur, the  
first ΔVESR is because of the equivalent series resistance  
(ESR) and the second, called the capacitive drop, is ΔVC.  
From Ohms law,  
3.5  
3
2.5  
2
Cutoff Voltage  
3.4 Volts  
% Increase  
voltage = current x resistance or V = IR  
28%  
73%  
300%  
Let us say that the instantaneous starting voltage is Vo, or  
voltage for the circuit from where the voltage drops. If the  
capacitor has an ESR of 100 milliOhms and the current is 1  
amp,  
3.5 Volts  
3.6 Volts  
0
100  
200  
Time (Minutes)  
300  
400  
ΔVESR = 1 amp x (0.100) ohms = 0.1 volts or 100 milli-volts.  
On demand, during the discharge mode, the voltage V = Vo  
- ΔVESR = (Vo - 0.1) volts  
Battery with Pulse Capacitor  
GSM Pulse @ 2 Amps  
Battery Alone  
The second voltage drop is because of the capacitance.  
This is shown in the equation as a linear function because of  
simplicity. Simply put,  
Figure 6a. Li-ION Battery at +25°C  
LI-ION Battery  
Q (charge) = C (capacitance) x V (voltage)  
4
The derivative, dQ/dt = I (current, in amps) = C x dV/dt  
Hence, ΔVC (dV, the voltage drop because of capacitance) =  
I x dt/C. This formula states that the larger the capacitance  
value the lower the voltage drop. Compared to a Ta capacitor  
this ΔVC is reduced by a factor of about 10 to 100. So,  
BestCap® has an advantage where higher capacitance is  
needed. If the current pulse itself is 1 amp, the current pulse  
width is 1 second, and the capacitance is 10 millifarads, the  
ΔVC = 1A x 1Sec/0.01F, or a 100 volts; such an application  
is out of the range of BestCap®. However, if the pulse width  
becomes narrower, say 10 milli-seconds, and the capaci-  
tance is 100 millifarads, the ΔVC = 1 x (10/1000)/(100/1000)  
= 0.1 volt or 100 milli-volts. This shows the advantage of the  
large capacitance and hence the term “pulse” capacitor.  
The specific power – specific energy graphs are used in the  
battery industry to compare competitive products. As the dt  
becomes smaller i.e.100 milliseconds, 10 milliseconds and  
then 1 millisecond, our estimates show that the specific  
power for the BestCap® is the highest as compared to our  
competitors because of our choice of internal materials  
chemistry.  
3.5  
3
2.5  
2
Cutoff Voltage  
3.4 Volts  
3.5 Volts  
% Increase  
28%  
100%  
3.6 Volts  
300%  
0
100  
200  
300  
400  
500  
Time (Minutes)  
Battery with Pulse Capacitor  
Battery Alone  
GSM Pulse @ 2 Amps 0°C  
Figure 6b. Li-ION Battery at +0°C  
Conclusion: we now clearly show that BestCap® has an  
advantage over competitors for short current pulse whose  
widths are smaller than a few hundred milliseconds.  
20  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
BestCap® Supercapacitor benefits to the designer are:  
4.3 ENHANCING THE POWER  
CAPABILITY OF PRIMARY BATTERIES  
When electronic equipment is powered by a primary (non  
rechargeable) battery, one of the limitations is the power  
capability of the battery.  
• Substantially lower voltage drop for pulse durations of up  
to 100msec.  
• Substantially lower voltage drop at cold temperatures  
(–20°C).  
• Discharge current limited only by the ESR of the capacitor  
In order to increase the available current from the battery,  
while maintaining a constant voltage drop across the battery  
terminals, the designer must connect additional cells in  
parallel leading to increased size and cost of both the  
battery and the finished product.  
The following analysis compares a primary battery connect-  
ed in parallel to a Lithium Tionil Chloride, to the same  
primary battery connected to a BestCap® Supercapacitor.  
Various current pulses (amplitude and duration) are applied  
in each case.  
When high power is only required for short periods more  
sophisticated approaches can be considered. The tradition-  
al approach involves using a high power rechargeable  
battery, charged by a low power primary cell.  
A far superior solution, however, is the use of a BestCap®  
Supercapacitor, which is a device specifically designed to  
deliver high power.  
®
BestCap 5.5V 100mF  
Voltage  
Voltage  
Drop (mV)  
Pulse  
Drop (mV)  
®
BestCap Supercapacitors  
rechargeable battery  
250mA / 1msec  
25  
50  
150  
220  
150  
470  
500mA / 1msec  
Traditional design:  
750mA / 1msec  
75  
200mA / 100msec at –20°C  
232  
Battery Powered  
Equipment Requiring  
High Current Pulses  
Primary  
Battery  
Rechargeable  
Battery  
®
BestCap 3.5V 560mF  
Voltage  
Voltage  
Drop (mV)  
Pulse  
Drop (mV)  
®
BestCap Supercapacitors  
rechargeable battery  
®
Design using BestCap :  
250mA / 100msec  
500mA / 100msec  
750mA / 100msec  
1500mA / 1msec  
50  
100  
152  
43  
190  
350  
190  
220  
350  
470  
Battery Powered  
BestCap®  
Equipment Requiring  
High Current Pulses  
Primary  
Battery  
1500mA / 100msec  
750mA / 100msec at –20°C  
305  
172  
Additional  
BestCap®  
Not limited  
Not limited  
Rechargeable  
Battery  
Characteristics  
Maximum discharge current  
(single pulse)  
5A Maximum  
Number of Cycles  
40K to 400K  
(to retain 80%  
capacity)  
21  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
THE SOLUTION:  
4.4 BESTCAP FOR GSM/GPRS PCMCIA  
MODEMS  
SOLUTION A  
SOLUTION B  
®
BestCap  
There is an increasing usage of PCMCIA modem cards for  
wireless LAN and WAN (Wide Area Network) applications.  
Chip Tantalum  
BZ154B473ZSB  
Rated Capacitance  
(milli Farad)  
2.2  
47  
The PCMCIA card is used as an accessory to Laptops and  
PDA’s, and enables wide area mobile Internet access,  
including all associated applications like Email and file  
transfer.  
Capacitance  
@ 0.5msec Pulse  
(milli Farad)  
2.2  
3.7  
30  
3.7  
Operating Voltage (V)  
With the wide spread use of GSM networks, a PCMCIA  
GSM modem is a commonly used solution. To achieve  
higher speed data rates, GSM networks are now being  
upgraded to support the GPRS standard.  
ESR  
(milli ohm)  
50  
160  
Size (mm)  
.4 x 7 x 2  
20 x 15 x 2.1  
Voltage Drop* (V)  
GPRS Pulse  
The design challenge:  
0.804V  
0.268V  
(25% duty cycle)  
GSM/GPRS transmission requires a current of approximate-  
ly 2A for the pulse duration. The PCMCIA bus cannot supply  
this amount of pulsed current. Therefore, there is a need for  
a relatively large capacitance to bridge the gap.  
Voltage After Pulse (V)  
Cutoff Voltage (V)  
Pass/FAIL  
2.896  
3.1  
3.432  
3.1  
FAIL  
PASS  
The capacitor supplies the pulse current to the transmitter,  
and is charged by a low current during the interval between  
pulses.  
* V=V1 +V2 =1.5A*ESR + (1.5A*1.154msec)/C  
V
V
from  
+
PCMCIA bus  
Capacitor  
2 Ampere  
V
V
= I*ESR  
1
Transmitter  
}
}
= I*t/C  
2
Current  
Voltage  
t
It is assumed that during the pulse, 0.5A is delivered by the  
battery, and 1.5A by the capacitor.  
Conclusion: High capacitance is needed to minimize voltage  
drop. A high value capacitance, even with a higher ESR,  
results in a lower voltage drop. Low voltage drop minimizes  
the conductive and emitted electro magnetic interference,  
and increases transmitter output power and efficiency.  
22  
®
BestCap Ultra-low ESR  
High Power Pulse Supercapacitors  
SECTION 5: EXTENDED  
TEMPERATURE RANGE  
AVX continues to expand the BestCap® product offerings for  
additional applications. For applications demanding other  
temperature ratings, AVX offers special construction tech-  
niques for high and low temperature performance upon  
request.  
AVX offers temperature range extensions as follows:  
-40ºC to 70ºC, -20ºC to 75ºC and -40ºC to 75ºC.  
AVX has extensive experience in manufacturing these alter-  
nate temperature rating parts. Contact AVX for your special  
temperature requirements.  
23  
AVX Products Listing  
PASSIVES  
Capacitors  
Filters  
Piezo Acoustic Generators  
Ceramic  
EMI  
Noise  
SAW  
Ceramic  
Multilayer Ceramic  
Film  
Resistors  
Arrays  
Glass  
Niobium Oxide* - OxiCap®  
Pulse Supercapacitors  
Tantalum  
Miniature Axials  
Low Pass - Thin Film  
Timing Devices  
Clock Oscillators  
MHz Quartz Crystal  
Resonators  
VCO  
Inductors  
Thin-Film  
Circuit Protection  
Thermistors  
Integrated Passive Components  
PMC - Thin-Film Networks  
Capacitor Arrays  
Fuses - Thin Film  
Transient Voltage Suppressors  
Varistors - Zinc Oxide  
TCXO  
Feedthru Arrays  
Low Inductance Decoupling Arrays  
Directional Couplers  
Thin-Film  
CONNECTORS  
Automotive  
IDC Wire to Board  
Standard, Custom  
Headers, Plugs, Assemblies  
Board to Board  
Memory  
SMD (0.4, 0.5, 1.0mm), BGA, Thru-Hole  
PCMCIA, Compact Flash, Secure Digital, MMC,  
Smartcard, SODIMM  
Card Edge  
Military  
H Government, DIN41612  
PolytectTM  
DIN41612  
Standard, Inverse, High Temperature  
FFC/FPC  
Soft Molding  
0.3, 0.5, 1.0mm  
Rack and Panel  
VariconTM  
Hand Held, Cellular  
Battery, I/O, SIMcard, RF shield clips  
2mm Hard Metric  
Standard, Reduced Cross-Talk  
For more information please visit  
our website at  
http://www.avx.com  
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given  
herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements  
or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not  
recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are  
typical and may not apply to all applications.  
© AVX Corporation  
“Niobium Oxide Capacitors are manufactured and sold under patent license from Cabot Corporation, Boyertown, Pennsylvania U.S.A.”  
24  
AMERICAS  
EUROPE  
ASIA-PACIFIC  
ASIA-KED  
(KYOCERA Electronic Devices)  
AVX Myrtle Beach, SC  
Tel: 843-448-9411  
AVX/Kyocera (S) Pte Ltd.,  
Singapore  
KED Hong Kong Ltd.  
Tel: +852-2305-1080/1223  
AVX Limited, England  
Tel: +44-1252-770000  
Tel: +65-6286-7555  
AVX Northwest, WA  
Tel: 360-699-8746  
AVX S.A.S., France  
Tel: +33-1-69-18-46-00  
KED Hong Kong Ltd.  
Shenzen  
Tel: +86-755-3398-9600  
AVX/Kyocera, Asia, Ltd.,  
Hong Kong  
AVX Midwest, IN  
Tel: 317-861-9184  
AVX GmbH, Germany  
Tel: +49-8131-9004-0  
Tel: +852-2363-3303  
KED Company Ltd.  
Shanghai  
Tel: +86-21-6217-1201  
AVX/Kyocera Yuhan Hoesa,  
South Korea  
AVX Mid/Pacific, CA  
Tel: 408-988-4900  
AVX SRL, Italy  
Tel: +39-02-614-571  
Tel: +82-2785-6504  
KED Hong Kong Ltd.  
Beijing  
Tel: +86-10-5869-4655  
AVX Northeast, MA  
Tel: 617-479-0345  
AVX/Kyocera HK Ltd.,  
Taiwan  
Tel: +886-2-2656-0258  
AVX Czech Republic  
Tel: +420-57-57-57-521  
AVX/ELCO UK  
Tel: +44-1638-675000  
AVX Southwest, CA  
Tel: 949-859-9509  
KED Taiwan Ltd.  
Tel: +886-2-2950-0268  
AVX/Kyocera (M) Sdn Bhd,  
Malaysia  
Tel: +60-4228-1190  
ELCO Europe GmbH  
Tel: +49-2741-299-0  
AVX Canada  
Tel: 905-238-3151  
KED Korea Yuhan Hoesa,  
South Korea  
Tel: +82-2-783-3604/6126  
AVX/Kyocera International  
Trading Co. Ltd.,  
Shanghai  
AVX South America  
Tel: +55-11-4688-1960  
AVX S.A., Spain  
Tel: +34-91-63-97-197  
KED (S) Pte Ltd.  
Singapore  
Tel: +86-21-6215-5588  
AVX Benelux  
Tel: +31-187-489-337  
AVX/Kyocera Asia Ltd.,  
Shenzen  
Tel: +65-6509-0328  
Kyocera Corporation  
Japan  
Tel: +81-75-604-3449  
Tel: +86-755-3336-0615  
AVX/Kyocera International  
Trading Co. Ltd.,  
Beijing  
Tel: +86-10-6588-3528  
AVX/Kyocera India  
Liaison Office  
Tel: +91-80-6450-0715  
Contact:  
A KYOCERA GROUP COMPANY  
S-BCAP0M310-C  
http://www.avx.com  

相关型号:

BZ013L144ZLB

Electric Double Layer Capacitor, 3.6V, 80% +Tol, 20% -Tol, 140000uF, Surface Mount, ROHS COMPLIANT
KYOCERA AVX

BZ015A104ZHBAJ

Electric Double Layer Capacitor, 5.5V, 80% +Tol, 20% -Tol, 100000uF, Through Hole Mount
KYOCERA AVX

BZ015A503ZHBAJ

Electric Double Layer Capacitor, 5.5V, 80% +Tol, 20% -Tol, 50000uF, Through Hole Mount
KYOCERA AVX

BZ015H104ZHB

Electric Double Layer Capacitor, 5.5V, 80% +Tol, 20% -Tol, 100000uF, Through Hole Mount, ROHS COMPLIANT
KYOCERA AVX

BZ015L104ZLB

Electric Double Layer Capacitor, 5.5V, 80% +Tol, 20% -Tol, 100000uF, Surface Mount, ROHS COMPLIANT
KYOCERA AVX

BZ015S503ZSB

Electric Double Layer Capacitor, 5.5V, 80% +Tol, 20% -Tol, 50000uF, Surface Mount, ROHS COMPLIANT
KYOCERA AVX

BZ017A223ZAB

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Through Hole Mount, ROHS COMPLIANT
KYOCERA AVX

BZ017A223ZHB

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Through Hole Mount
KYOCERA AVX

BZ017A223ZHBAJ

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Through Hole Mount
KYOCERA AVX

BZ017A223ZSBAJ

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Surface Mount
KYOCERA AVX

BZ017L223ZLB

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Surface Mount, ROHS COMPLIANT
KYOCERA AVX

BZ017S223ZSB

Electric Double Layer Capacitor, 7V, 80% +Tol, 20% -Tol, 22000uF, Surface Mount, ROHS COMPLIANT
KYOCERA AVX